On a positive subharmonic Bergman function
Bull. Korean Math. Soc. 2010 Vol. 47, No. 3, 623-632
https://doi.org/10.4134/BKMS.2010.47.3.623
Published online May 1, 2010
Jung Ok Kim and Ern Gun Kwon
Andong National University and Andong National University
Abstract : A holomorphic function $F$ defined on the unit disc belongs to $\mathcal A^{p,\alpha}(0 < p < \alpha< ~\infty$. For boundedness of the composition operator defined by $C_f g =g\circ f$ mapping Blochs into $\mathcal A^{p,\alpha}$, the following (1) is a sufficient condition while (2) is a necessary condition. $$\int_0^1 \frac 1{1-r} \big(1+\log \frac 1{1-r}\big) ^{- \alpha}~M_p( r , \lambda \circ f)^p ~ dr ~< ~ \infty,\tag{1}$$ $$ \int_0^1 \frac 1{1-r} \big(1+\log \frac 1{1-r}\big)^{- \alpha +p} (1-r)^p~ M_p \left(r, f^\sharp \right)^p dr ~< ~\infty.\tag{2}$$
Keywords : composition operator, Bloch space, weighted Bergman space
MSC numbers : 32A37
Downloads: Full-text PDF  


Copyright © Korean Mathematical Society. All Rights Reserved.
The Korea Science Technology Center (Rm. 411), 22, Teheran-ro 7-gil, Gangnam-gu, Seoul 06130, Korea
Tel: 82-2-565-0361  | Fax: 82-2-565-0364  | E-mail: paper@kms.or.kr   | Powered by INFOrang Co., Ltd