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HARMONICITY OF ALMOST NORDEN SUBMERSIONS

BETWEEN ALMOST NORDEN MANIFOLDS

Garima Gupta, Rakesh Kumar, Rachna Rani, and Rashmi Sachdeva

Abstract. We define an almost Norden submersion (holomorphic and
semi-Riemannian submersion) between almost Norden manifolds and

show that, in most of the cases, the base manifold has the similar kind

of structure as that of total manifold. We obtain necessary and sufficient
conditions for almost Norden submersion to be a totally geodesic map.

We also derive decomposition theorems for the total manifold of such

submersions. Moreover, we study the harmonicity of almost Norden sub-
mersions between almost Norden manifolds and between Kaehler-Norden

manifolds. Finally, we derive conditions for an almost Norden submersion
to be a harmonic morphism.

1. Introduction

The notion of Riemannian submersions between Riemannian manifolds was
initiated by O’Neill [20] and Gray [14]. Since a Riemannian submersion acted
as an effective tool to compare geometries and structures between the manifolds
and has many significant applications in differential geometry and mathemat-
ical physics therefore geometry of Riemannian submersions was further devel-
oped by many others. Then the geometry of semi-Riemannian submersions was
introduced by O’Neill in his celebrated book [21]. Watson [24] defined almost
Hermitian submersions between almost Hermitian submanifolds and examined
the influence of a given structure defined on the total space on the determi-
nation of the corresponding structure on the fibre submanifolds and the base
manifolds. Chinea [5] studied almost contact Riemannian submersions between
almost contact metric manifolds. Later, almost Hermitian submersions and al-
most contact submersions were studied between subclasses of almost Hermitian
and almost contact manifolds, for details see [10] and many references there in.
Recently, Sahin [23] defined and studied various types of Riemannian submer-
sions such as anti-invariant submersions, semi-invariant submersions, generic
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Riemannian submersions, slant submersions, semi-slant submersions and others
from almost Hermitian manifolds.

Let (M2m, g, J) be an indefinite almost complex manifold and the semi-
Riemannian metric g be of neutral signature (m,m). The semi-Riemannian
metric g is said to be a Norden metric if the almost complex structure J is
anti-isometry with respect to g, i.e., g(JX, JY ) = −g(X,Y ) for any vector
fields X and Y on M and an almost complex manifold endowed with Norden
metric is called almost Norden manifold [13]. The difference between the ge-
ometry of indefinite almost Hermitian manifolds and almost Norden manifolds
arises due to the fact that in the former case, the almost complex structure
J is an isometry with respect to the semi-Riemannian metric g. Since the
geometry of Riemannian and semi-Riemannian submersions has potential ap-
plications in medical imaging [18], theory of robotics [1], Kaluza-Klein theory
[4], statistical analysis on manifolds [3] and many others, therefore study of
Riemannian submersions is an active area of research. Moreover, as per our
knowledge, the notion of Riemannian submersions on almost Norden manifolds
has not been considered yet. All these facts motivate us to work on the theory
of submersions between almost Norden manifolds.

In present paper, we define an almost Norden submersion (which is holomor-
phic and semi-Riemannian submersion) between almost Norden manifolds. It
is known that Gray and Hervella [15] have obtained complete classification of
almost Hermitian manifolds where Ganchev and Borisov have obtained classi-
fication of almost Norden manifolds in [13]. Using almost Norden submersions,
we show that in most of the cases, the base manifold has the similar kind of
structure as that of total manifold (Theorems 3.6, 3.7, 3.8 and Corollary 3.9).
We obtain necessary and sufficient conditions for almost Norden submersion
to be a totally geodesic map (Theorem 4.9). Then we derive decomposition
theorems for the total manifold of almost Norden submersions (Theorems 4.12,
4.18). It is well known that a map between Riemannian manifolds is harmonic
if it is a critical point of the energy density of that map [2]. Gudmundsson and
Wood [16] obtained conditions for a holomorphic map between almost Hermit-
ian manifolds to be a harmonic. Later, Eells and Sampson [7] showed that
a holomorphic map between Kaehler manifolds is harmonic. We also obtain
conditions for almost Norden submersions between almost Norden manifolds
and between Kaehler-Norden manifolds to be harmonic (Corollary 4.22). We
discuss horizontally weakly conformal almost Norden submersions and derive
conditions for it to be a harmonic morphism (see Theorem 4.25).

2. Semi-Riemannian submersions

Assume that (Mm+n
r+s , g) and (Bns , g

′) are (m+ n) and (n)-dimensional con-
nected semi-Riemannian manifolds of index r + s and s, respectively, where
0 ≤ r ≤ m, 0 ≤ s ≤ n. A semi-Riemannian submersion [21] is a smooth
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surjective map

π : M → B,

between semi-Riemannian manifolds M and B such that

A1. the fibers π−1(b), b ∈ B are semi-Riemannian submanifolds of M ;
A2. the differential π∗ of π preserves scalar products of vectors normal to

the fibers.

In the case of semi-Riemannian submersions, the fibers are (dim(M)−dim(B))-
dimensional semi-Riemannian submanifolds of M and the vectors tangent to
the fibers are called vertical vectors and belong to the kernel of the linear map
π∗. The distribution of vertical vectors is denoted by V then V = (ker π∗),
implies V is integrable and fibers are its integral manifolds of maximal rank.
Vectors which are normal to the fibers are called horizontal and the distribution
of horizontal vectors is denoted by H then H = (ker π∗)

⊥ which is orthogonal
complement of V in TM , that is, TM = V ⊕ortho H. A horizontal vector field
X is said to be a basic vector field on M if it is π-related to a vector field X∗
of B, that is, π∗Xp = X∗ π(p) for every p ∈M .

Let ∇g be the Levi-Civita connection of g. Then O’Neill [20] defined tensors
T and A for all vector fields E,F on M , which characterize the geometry of
Riemannian submersions, as

(1) AEF = H∇gHEVF + V∇gHEHF,

(2) TEF = H∇gVEVF + V∇gVEHF.

Clearly TE and AE are skew-symmetric operators on the tangent bundle of
M reversing the vertical and the horizontal distributions. Let U, V be vertical
vector fields and X,Y be horizontal vector fields on M . Then using (1) and
(2), we have

(3) ∇gUV = TUV + V∇gUV,

(4) ∇gUX = H∇gUX + TUX,

(5) ∇gXV = AXV + V∇gXV,

(6) ∇gXY = H∇gXY +AXY.

It is easy to observe that T acts as second fundamental form for the fibers
therefore fibers are totally geodesic if and only if T vanishes identically. While
the tensor A gives the integrability of the horizontal distribution. Moreover,
the tensors T and A, satisfy the following relations

(7) TV U = TUV, ∀ U, V ∈ Γ(V),

(8) AXY = −AYX =
1

2
V[X,Y ], ∀ X,Y ∈ Γ(H).
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Now, we recall the notion of second fundamental form of a map between the
Riemannian manifolds. Let π : Mm → B be a smooth map between Riemann-
ian manifolds (M, g) and (B, g′). SupposeW is a vector bundle of B. Then the
pull back bundle π−1W of M has fibers given by (π−1W)x = Wπ(x), x ∈ M .

For a given connection ∇W on W there is a unique pull back connection ∇π
on the pull back bundle π−1W of M and satisfies

∇πX(π∗σ) = ∇Wπ∗(X)σ,

where σ ∈ Γ(W) and π∗σ = σ ◦ π ∈ Γ(π−1W). Moreover, it is known that the
differential π∗ of π can be viewed as a section of the bundle T ∗M ⊗ π−1TB =
Hom(TM, π−1TB) of M . This bundle has a connection ∇ induced from the
Levi-Civita connection ∇g of M and the pull back connection ∇π. On ap-
plying the induced connection ∇ to differential map π∗, we obtain the second
fundamental form ∇π∗ of π and given by

(9) (∇π∗)(X,Y ) = ∇πX(π∗(Y ))− π∗(∇gXY )

for any X,Y ∈ Γ(TM). It is also known that the second fundamental form
is symmetric. The smooth map π : M → B is said to be totally geodesic if
for each geodesic γ in M , the image π(γ) is also geodesic in B, equivalently,
if (∇π∗) = 0. Let {ei}mi=1 be an orthonormal frame on M . Then the trace
of second fundamental form gives us an important quantity, called the tension
field of π, which is the section τ(π) ∈ Γ(π−1TB) and defined by

τ(π) = trac ∇π∗ =

m∑
i=1

(∇π∗)(ei, ei).

The map π is said to be harmonic if its tension field τ(π) vanishes identically,
for details see [2].

Now, we recall the notion of harmonic morphism between semi-Riemannian
manifolds from [12]. A smooth map π : M → B between semi-Riemannian
manifolds is said to be harmonic morphism if π pull back harmonic functions
(that is, local solutions of Laplace-Beltrami equation) on B into harmonic
functions on M . Analogous to Riemannian case [11], Fuglede [12] showed that
a harmonic morphism is the same as a smooth map which is harmonic and
horizontally weakly conformal.

A C1-map π : (M, g)→ (B, g′) between semi-Riemannian manifolds is said
to be horizontally weakly conformal [12] if

(i) for any x ∈ M at which (ker π∗)x (or equivalently (ker π∗)
⊥
x ) is non-

degenerate and π∗(x) 6= 0, the restriction of π∗(x) to (ker π∗)
⊥
x is

surjective and conformal in the sense that there is a (necessarily unique)
real number λ(x) 6= 0 such that

(10) g′π(x)(π∗(X), π∗(Y )) = λ(x)gx(X,Y ), ∀ X,Y ∈ Γ(ker π∗)
⊥
x .
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(ii) For any x ∈ M at which (ker π∗)x is degenerate then (ker π∗)
⊥
x ⊂

(ker π∗)x, that is

gx(X,Y ) = 0, ∀ X,Y ∈ Γ(ker π∗)x.

The real number λ is called the dilation of a horizontally weakly conformal
map π, which is extended to all of M by λ(x) = 0 if π∗(x) = 0 or if (ker π∗)
is degenerate. Here the term “weakly” refers to the possible occurrence of
points x ∈ M at which λ(x) = 0. A horizontally weakly conformal map is
said to be horizontally homothetic if the gradient of its dilation λ is vertical,
i.e., H(grad λ) = 0. If the dilation is constant and non-zero, then π is a
Riemannian submersion up to scale, i.e., it is a Riemannian submersion after
a suitable homothetic change of metric on the domain or codomain.

3. Almost Norden submersions

Let (M, g, J) be a 2m-dimensional almost complex manifold with its almost
complex structure J . If the metric g on M satisfies

(11) g(JX, Y ) = g(X, JY ), equivalently, g(JX, JY ) = −g(X,Y )

for all vector fields X,Y on M , then it is called a Norden metric on M . In this
case (J, g) is called the almost Norden structure on M and (M, g, J) is said
to be an almost Norden manifold. Then metric g is necessarily an indefinite
metric of neutral (Kleinian) signature (m,m). If J is integrable, then (M, g, J)
is called a Norden manifold. The associated metric g̃ of an almost Norden
manifold (M, g, J) is given by

(12) g̃(X,Y ) = (g ◦ J)(X,Y ) = g(JX, Y )

for all vector fields X,Y on M . Obviously, g̃ is a Norden metric on M and
known as the twin (or dual) metric of g on M . It should be noted that g̃ is also
of neutral signature (m,m). Let ∇g be the Levi-Civita connection of g and a
tensor field F of type (0, 3) on M is given by (for details, see [13])

(13) F(X,Y, Z) = (∇gX g̃)(Y,Z) = g((∇gXJ)Y,Z)

for all vector fields X,Y on M , where the tensor field F satisfies the following
properties

(14) F(X,Y, Z) = F(X,Z, Y ), F(X, JY, JZ) = F(X,Y, Z).

Definition 1. Let (M2m
m , g, J) and (B2n

n , g′, J ′) be 2m and 2n-dimensional al-
most Norden manifolds of index m and n, respectively, where n ≤ m. Assume
that the surjective map π : (M2m

m , g, J) → (B2n
n , g′, J ′) is a semi-Riemannian

submersion from M to B. Then we say the map π is an almost Norden sub-
mersion between almost Norden manifolds if π is an almost complex map (or
a holomorphic map), that is

(15) π∗ ◦ J = J ′ ◦ π∗.
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From the definition of almost Norden submersion, it is clear that the index
of the vertical distribution and the horizontal distribution is m − n and n,
respectively.

Theorem 3.1. Let π : (M2m
m , g, J) → (B2n

n , g′, J ′) be an almost Norden sub-
mersion between almost Norden manifolds. Then the vertical and horizontal
distributions are J-invariant.

Proof. The proof is analogous as for the almost Hermitian submersions (see
Proposition 2.1 of [24]), therefore we omit the proof here. �

Moreover, from Definition 1 and the last theorem, we have following asser-
tions immediately.

Theorem 3.2. Let π : (M2m
m , g, g̃, J) → (B2n

n , g′, g̃′, J ′) be an almost Norden
submersion between almost Norden manifolds such that ∇g and ∇′ be the Levi-
Civita connections on M and B, respectively. Let X,Y be the basic vector fields
on M and are π-related to vector fields X∗ and Y∗ of B, respectively. Then

(i) g(X,Y ) = g′(X∗, Y∗) ◦ π, g̃ = g̃′(X∗, Y∗) ◦ π.
(ii) JX is the basic vector field associated to J ′X∗.
(iii) H∇gXY is the basic vector field associated to ∇′X∗Y∗.
(iv) H[X,Y ] is the basic vector field associated to [X∗, Y∗].

Example 3.3. Let (R8
4, J, g) and (R4

2, J
′, g′) be almost Norden manifolds en-

dowed with almost Norden structures (J, g) and (J ′, g′), respectively and given
by

g = −dx21 + dx22 − dx23 + dx24 − dx25 + dx26 − dx27 + dx28,

J(x1, x2, x3, x4, x5, x6, x7, x8) = (−x2, x1,−x4, x3,−x6, x5,−x8, x7),

and
g′ = −dy21 + dy22 − dy23 + dy24 ,

J ′(y1, y2, y3, y4) = (y2,−y1, y4,−y3),

respectively. Let π : R8
4 → R4

2 be a map defined by

π(x1, x2, x3, x4, x5, x6, x7, x8) = (x1 + x5, x2 + x6, x3 + x7, x4 + x8).

Then by straightforward calculations

(ker π∗) = span{U1, U2, U3, U4},
where

U1 = ∂x1 − ∂x5, U2 = ∂x2 − ∂x6,
U3 = ∂x3 − ∂x7, U4 = ∂x4 − ∂x8,

and
(ker π∗)

⊥ = span{Z1, Z2, Z3, Z4},
where

Z1 = ∂x1 + ∂x5, Z2 = ∂x2 + ∂x6, Z3 = ∂x3 + ∂x7, Z4 = ∂x4 + ∂x8.



HARMONICITY OF ALMOST NORDEN SUBMERSIONS . . . 381

It is easy to see that JU1 = −U2, JU3 = −U4, JZ1 = −Z2 and JZ3 = −Z4,
therefore (ker π∗) and (ker π∗)

⊥ are invariant with respect to J and moreover

g(JUi, JUi) = −g(Ui, Ui), g(JZi, JZi) = −g(Zi, Zi), ∀ i, j ∈ {1, 2, 3, 4}.

Furthermore, by direct calculations, we derive

π∗JZ1 = −2∂y2 = J ′π∗Z1, π∗JZ2 = 2∂y1 = J ′π∗Z2,

π∗JZ3 = −2∂y4 = J ′π∗Z3, π∗JZ4 = 2∂y3 = J ′π∗Z4.

Hence π∗JZi = J ′π∗Zi for i ∈ {1, 2, 3, 4}, consequently π is an almost Norden
submersion from an almost Norden manifold (R8

4, J, g) to an almost Norden
manifold (R4

2, J
′, g′).

Let (M, g, J) be an almost Norden manifold. Then the Nijenhuis tensor N
of M is given by

N (X,Y ) = [X,Y ] + [JX, JY ]− J [JX, Y ]− J [X, JY ],

which can be further expressed using the Levi-Civita connection ∇g of g as
below

N (X,Y ) = (∇gXJ)JY − (∇gY J)JX + (∇gJXJ)Y − (∇gJY J)X(16)

for any X,Y ∈ Γ(TM). The associated tensor Ñ with N is given by

Ñ (X,Y ) = (∇gXJ)JY + (∇gY J)JX + (∇gJXJ)Y + (∇gJY J)X.(17)

Next, let {ei}2mi=1 be a basis of TpM . Then 1-form associated with F is given
by, see [13]

ϕ(X) =

2m∑
i,j=1

gijF(ei, ej , X) =

2m∑
i,j=1

gijg((∇geiJ)ej , X), ∀X ∈ TpM,

where gij is the inverse matrix of g. Furthermore, last expression can be locally
defined as below

ϕ(X) =

2m∑
i,j=1

gijg((∇gXi
J)Xj , X), ∀X ∈ TpM,

where {Xi}2mi=1 is a local basis of TM .
Now, we recall an important definition of adapted local basis for an almost

Norden manifold from [9] for further uses.

Definition 2. Let (M, g, J) be an almost Norden manifold. Then for any
p ∈M , there exists a local basis {E1, . . . , Em, F1, . . . , Fm} of TM such that

(18) Fi = JEi, g(Ei, Ej) = g(Fi, Fj) = 0, g(Ei, Fj) = ∂ij , ∀i = 1, . . . ,m,

and this local basis is called an adapted local basis to the almost Norden struc-
ture (J, g).
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Lemma 3.4 ([8]). Let (M, g, J) be an almost Norden manifold. Then the 1-
form ϕ(X) can be locally expressed by means of an adapted local basis {E1, . . . ,
Em, F1, . . . , Fm} of TM to (J, g) as follows:

(19) ϕ(X) =

m∑
i=1

{
g((∇gEi

J)Fi, X) + g((∇gFi
J)Ei, X)

}
, ∀X ∈ Γ(TM).

Using the tensor field F along with 1-form ϕ(X), eight classes of almost complex
manifold with Norden metric were obtained in [13] as below:

Theorem 3.5. Let (M, g, J) be a 2m-dimensional almost Norden manifold.
Then we have following classes of this kind of manifolds:

(1) The class W0 or Kaehlerian manifolds with Norden metric (Kaehler-
Norden manifolds) characterized by the condition

F(X,Y, Z) = 0.

(2) The class W1 or conformally Kaehlerian manifolds with Norden metric
characterized by the condition

F(X,Y, Z) =
1

2m
{g(X,Y )ϕ(Z) + g(X,Z)ϕ(Y ) + g(X, JY )ϕ(JZ)

+ g(X, JZ)ϕ(JY )}
for all vector fields X,Y, Z on M .

(3) The class W2 or special complex manifolds with Norden metric char-
acterized by the condition

F(X,Y, JZ) + F(Y,Z, JX) + F(Z,X, JY ) = 0, ϕ = 0,

or equivalently N = 0, ϕ = 0.
(4) The class W3 or quasi-Kaehlerian manifolds with Norden metric char-

acterized by the condition

F(X,Y, Z) + F(Y,Z,X) + F(Z,X, Y ) = 0,

or equivalently Ñ = 0.
(5) The class W1 ⊕W2 or complex manifolds with Norden metric charac-

terized by the condition

N = 0.

(6) The class W2⊕W3 or semi-Kaehlerian with Norden metric character-
ized by the condition

ϕ = 0.

(7) The class W1 ⊕W3 characterized by the condition

GXY ZF(X,Y, Z) =
1

m
GXY Z

{
g(X,Y )ϕ(Z) + g(X, JY )ϕ(JZ)

}
,

where G denotes the cyclic sum by X,Y, Z.
(8) The class W or the whole class of almost Norden manifolds.
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Theorem 3.6. Let π : (M, g, g̃, J) → (B, g′, g̃′, J ′) be an almost Norden sub-
mersion. If M is a Kaehler-Norden manifold, then B is also a Kaehler-Norden
manifold.

Proof. Let X,Y, Z be basic vector fields on M and are π-related to vector fields
X∗, Y∗, Z∗ on B, respectively. Then on using (13) and Theorem 3.2, it follows
that

F(X,Y, Z) = g(∇gXJY − J∇
g
XY,Z)

= g(H∇gXJY −HJ∇
g
XY, Z)

= g′(∇′X∗J
′Y∗ − J ′∇′X∗Y∗, Z∗) ◦ π

= g′((∇′X∗J
′)Y∗, Z∗) ◦ π

= F ′(X∗, Y∗, Z∗) ◦ π
= π∗F ′(X∗, Y∗, Z∗).(20)

Let M be a Kaehler-Norden manifold, that is, F(X,Y, Z) = 0. Then from the
last expression, we have π∗F ′(X∗, Y∗, Z∗) = 0. Since π is a semi-Riemannian
submersion, then π∗ is a linear isometry, therefore F ′(X∗, Y∗, Z∗) = 0 and
consequently B, is a Kaehler-Norden manifold. �

Theorem 3.7. Let π : (M, g, J)→ (B, g′, J ′) be an almost Norden submersion.
If M is a quasi-Kaehlerian manifold or a complex manifold with Norden metric,
then B is also a quasi-Kaehlerian manifold or a complex manifold with Norden
metric, respectively.

Proof. It is known from Theorem 3.2 that the basic vector fields on M , π-
related to J ′X∗, ∇′X∗J

′Y∗ and J ′∇′X∗Y∗ for any vector fields X∗, Y∗ on B are

JX, H∇gXJY and HJ∇gXY , respectively, for any basic vector fields X, Y on
M , π-related to vector fields X∗, Y∗ on B, respectively. Therefore from (16)
and (17), it follows immediately that the basic vector fields on M , π-related

to the Nijenhuis tensors N ′(X∗, Y∗) and Ñ ′(X∗, Y∗) on B are HN (X,Y ) and

HÑ (X,Y ), respectively. Hence from Theorem 3.5, if M is a quasi-Kaehlerian
manifold or a complex manifolds with Norden metric, then B is also of the
same class, respectively. �

Theorem 3.8. Let π : (M2m
m , g, J) → (B2n

n , g′, J ′) be an almost Norden sub-
mersion such that M is a semi-Kaehlerian manifold or a special complex man-
ifold with Norden metric. Then B is also a semi-Kaehlerian manifold or a
special complex manifold with Norden metric if and only if

TUi
Vi =

J

2
(TUi

Ui − TVi
Vi),(21)

where {U1, . . . , Um−n, V1 = JU1, . . . , Vm−n = JUm−n} is an adapted local basis
of (ker π∗).
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Proof. Assume that {U1, . . . , Um−n, V1 = JU1, . . . , Vm−n = JUm−n} and {X1,
. . . , Xn, Y1 = JX1, . . . , Yn = JXn} are adapted local basis of (ker π∗) and
(ker π∗)

⊥, respectively. Then using (19), we have

ϕ(Z) =

m−n∑
i=1

{
g((∇gUi

J)Vi, Z) + g((∇gVi
J)Ui, Z)

}
+

n∑
j=1

{
g((∇gXj

J)Yj , Z) + g((∇gYj
J)Xj , Z)

}
for any Z ∈ Γ(ker π∗)

⊥. The above expression further can be written as

ϕ(Z) = −
m−n∑
i=1

g(∇gUi
Ui + J∇gUi

Vi −∇gVi
Vi + J∇gVi

Ui, Z)

−
n∑
j=1

g(∇gXj
Xj + J∇gXj

Yj −∇gYj
Yj + J∇gYj

Xj , Z).

Since Ui, Vi ∈ Γ(ker π∗) and Xj , Yj ∈ Γ(ker π∗)
⊥ therefore, on using (3) and

(6), we get

ϕ(Z) = −
m−n∑
i=1

g(TUi
Ui + JTUi

Vi − TVi
Vi + JTVi

Ui, Z)

−
n∑
j=1

g(H∇gXj
Xj +HJ∇gXj

Yj −H∇gYj
Yj +HJ∇gYj

Xj , Z),

and further using (7) and Theorem 3.2, we derive

ϕ(Z) = −
m−n∑
i=1

g(TUi
Ui + JTUi

Vi − TVi
Vi + JTUi

Vi, Z)

−
n∑
j=1

g′(∇′X∗jX∗j + J ′∇′X∗jY∗j −∇
′
Y∗jY∗j + J ′∇′Y∗jX∗j , Z∗) ◦ π

= −
m−n∑
i=1

g(TUi
Ui − TVi

Vi + 2JTUi
Vi, Z) + ϕ′(Z∗).(22)

Hence the proof is complete from the above expression and using the proof of
Theorem 3.7. �

Corollary 3.9. Assume π : (M2m
m , g, J) → (B2n

n , g′, J ′) is an almost Nor-
den submersion such that the adapted local basis {U1, . . . , Um−n, V1 = JU1, . . .,
Vm−n = JUm−n} of (ker π∗) satisfies (21). If M is a conformally Kaehlerian
manifold with Norden metric or of class W1 ⊕ W3, then B is a conformally
Kaehlerian manifold with Norden metric or of class W1 ⊕W3, respectively.

Proof. Proof follows directly using (20) and (22). �
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4. Totally geodesic map, decomposition theorems and harmonicity

An almost Norden manifold (M, g, J) is said to be a Kaehler-Norden man-
ifold [17], if ∇gJ = 0, where ∇g is the Levi-Civita connection of g. Hence
from (13), it is clear that M is a Kaehler-Norden manifold if and only if
F(E,F,G) = 0 for any E,F,G ∈ Γ(TM).

Theorem 4.1. Let π : (M2m
m , g, J) → (B2n

n , g′, J ′) be an almost Norden sub-
mersion from a Kaehler-Norden manifold M . Let X,Y be horizontal vector
fields and V be a vertical vector field on M . Then

(i) g(AXV, Y )= −g(AXY, V ) and similarly g(AXV, JY )= −g(AXY, JV ).
(ii) g(AJXY, V ) = g(AXJY, V ).
(iii) AXJX = 0.
(iv) AXJY = −AY JX.
(v) AXJY = JAXY .

Proof. Let ∇g be the Levi-Civita connection of g. Then, using (5) and (6), we
get

g(AXV, Y ) = g(∇gXV, Y ) = −g(V,∇gXY ) = −g(V,AXY ).

Now, for any horizontal vector field X and a vertical vector field V , we have
π∗[X,V ] = [π∗(X), 0] = 0, implies [X,V ] is always vertical. Since ∇g is a
torsion free connection on M , the vertical and horizontal distributions are J-
invariant (Theorem 3.1), then using (6), we obtain

g(AJXY, V ) = g(∇gJXY, V ) = −g(Y,∇gJXV ) = −g(Y,∇gV JX).

Since M is a Kaehler-Norden manifold, therefore above expression becomes

g(AJXY, V ) = −g(JY,∇gVX) = −g(JY,∇gXV ) = g(∇gXJY, V ) = g(AXJY, V ).

Hence the assertion (ii) is complete. Further, assertion (ii) can be written as
g(AJXY −AXJY, V ) = 0, then using (8), we get 2g(AXJX, V ) = 0 and then
the non-degeneracy of the vertical distribution implies AXJX = 0. Finally,
the assertion (iv) follows directly from (iii) by standard polarization technique.
Assertion (v) is trivial using the Kaehlerian property of M with (6). �

We can derive the following relations analogous to relations in the above
theorem.

Theorem 4.2. Let π : (M2m
m , g, J) → (B2n

n , g′, J ′) be an almost Norden sub-
mersion from a Kaehler-Norden manifold M . Let X be a horizontal vector field
and U, V be vertical vector fields on M . Then

(i) g(TUV,X) = −g(TUX,V ).
(ii) g(TUX, JV ) = −g(JX, TUV ).
(iii) g(TJUV,X) = g(TUJV,X).
(iv) TUJV = JTUV .
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Theorem 4.3. Let π : (M2m
m , g, g̃, J) → (B2n

n , g′, g̃′, J ′) be an almost Norden
submersion from a Kaehler-Norden manifold M . Let X,Y be horizontal vector
fields and U, V be vertical vector fields on M . Then

(23) AJXV = JAXV = AXJV.

Proof. Since M is a Kaehler-Norden manifold, then using (4), we have

g(TV JX,U) = g(∇gVX, JU) = g(JTVX,U),

then non-degeneracy of the vertical distribution implies

(24) TV JX = JTVX.

Now, from (4) we have

∇gVX = H(∇gVX) + TVX = H(∇gXV ) + TVX = AXV + TVX.(25)

Then using (24) and (25), we obtain

(∇gV J)X = AJXV − JAXV,

since M is a Kaehler-Norden manifold, we obtain

(26) AJXV = JAXV.

Again, as M is a Kaehler-Norden manifold then from (13), we have

0 = (∇gJX g̃)(Y, JV ) = g((∇gJXJ)Y, JV ),

further using (5), (6), (26), (i) and (ii) of Theorem 4.1, it implies

0 = g(∇gJXJY, JV ) + g(∇gJXY, V )

= g(AJXJY, JV )− g(Y,AJXV )

= −g(AXY, JV )− g(Y,AJXV )

= g(Y,AXJV )− g(Y,AJXV ).

Then the non-degeneracy of the vertical distribution gives

(27) AXJV = AJXV.

Hence from (26) and (27), our assertion follows. �

It is known that the vertical distribution (ker π∗) is always integrable and
in general, horizontal distribution (ker π∗)

⊥ is not integrable. In the follow-
ing theorem, we obtain a necessary and sufficient condition for the horizontal
distribution (ker π∗)

⊥ to be integrable.

Theorem 4.4. Let π : (M2m
m , g, J) → (B2n

n , g′, J ′) be an almost Norden sub-
mersion between almost Norden manifolds. Then the horizontal distribution
(ker π∗)

⊥ is integrable if and only if

(28) g′(π∗X, (∇π∗)(Y, V )) = g′(π∗Y, (∇π∗)(X,V ))

for any X,Y ∈ Γ(ker π∗)
⊥ and V ∈ Γ(ker π∗).
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Proof. Let X,Y ∈ Γ(ker π∗)
⊥ and V ∈ Γ(ker π∗). Then, using the fact the

∇g is a Levi-Civita connection on M , we get

g([X,Y ], V ) = g(∇gXY, V )− g(∇gYX,V ) = −g(Y,∇gXV ) + g(X,∇gY V ).

Since π is a semi-Riemannian submersion, then last expression can be written
as

g([X,Y ], V ) = −g′(π∗Y, π∗(∇gXV )) + g′(π∗X,π∗(∇gY V )),

further using (9), we obtain

g([X,Y ], V ) = g′(π∗Y, (∇π∗)(X,V ))− g′(π∗X, (∇π∗)(Y, V )),

this completes the proof. �

Corollary 4.5. Let π : (M2m
m , g, J) → (B2n

n , g′, J ′) be an almost Norden sub-
mersion between almost Norden manifolds. If submersion π is totally geodesic,
that is, (∇π∗) = 0, then the horizontal distribution (ker π∗)

⊥ is always inte-
grable.

Analogous to the proof of Theorem 4.4, we can prove the following results
immediately.

Theorem 4.6. Let π : (M2m
m , g, J) → (B2n

n , g′, J ′) be an almost Norden sub-
mersion between almost Norden manifolds. Then the horizontal distribution
(ker π∗)

⊥ defines totally geodesic foliations on M if and only if

(29) (∇π∗)(X,V ) = 0

for any X ∈ Γ(ker π∗)
⊥ and V ∈ Γ(ker π∗).

Theorem 4.7. Let π : (M2m
m , g, J) → (B2n

n , g′, J ′) be an almost Norden
submersion between almost Norden manifolds. Then the vertical distribution
(ker π∗) defines totally geodesic foliations on M if and only if

(30) (∇π∗)(U, V ) = 0

for any U, V ∈ Γ(ker π∗).

A smooth map π : (M1, g1, J1)→ (M2, g2, J2) between almost Hermitian man-
ifolds is called pluriharmonic if its second fundamental form ∇π∗ satisfies

(31) (∇π∗)(X,Y ) + (∇π∗)(J1X, J1Y ) = 0

for any X,Y ∈ Γ(TM1) [19].

Theorem 4.8. Let π : (M2m
m , g, J) → (B2n

n , g′, J ′) be an almost Norden sub-
mersion such that M is a Kaehler-Norden manifold. Then π is a pluriharmonic
map.

Proof. Let X,Y ∈ Γ(TM). Then using (9), we have

(∇π∗)(X, JY ) = ∇πX(π∗(JY ))− π∗(∇gXJY ).
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Since π is an almost Norden submersion, that is, π∗ ◦ J = J ′ ◦ π∗ and M is a
Kaehler-Norden manifold, then using Theorem 3.6, B is also a Kaehler-Norden
manifold therefore we get

(∇π∗)(X, JY ) = ∇πXJ ′(π∗Y )− π∗(J(∇gXY ))

= ∇′X∗J
′(π∗Y )− J ′(π∗(∇gXY ))

= J ′((∇π∗)(X,Y )).

Using last relation with the symmetric property of the second fundamental
form of π, we further obtain

(∇π∗)(JX, JY ) = −(∇π∗)(X,Y ),

and hence π is a pluriharmonic map. �

Theorem 4.9. Let π : (M2m
m , g, J) → (B2n

n , g′, J ′) be an almost Norden sub-
mersion from an almost Norden manifold M . Then π is a totally geodesic map
if and only if

(32) AXV = 0, TUV = 0

for any X,Y ∈ Γ(ker π∗)
⊥ and U, V ∈ Γ(ker π∗). Moreover, if π is a totally

geodesic map, then the fibers are totally geodesic.

Proof. From the definition of totally geodesic map, it is obvious that the almost
Norden submersion π is a totally geodesic map if and only if

(∇π∗)(X,Y ) = 0, (∇π∗)(X,V ) = 0, (∇π∗)(U, V ) = 0

for any X,Y ∈ Γ(ker π∗)
⊥ and U, V ∈ Γ(ker π∗). Using Theorem 3.2 and

(9), it is obvious that the second fundamental form ∇π∗ of the almost Norden
submersion π satisfies

(33) (∇π∗)(X,Y ) = 0, X, Y ∈ Γ(ker π∗)
⊥.

For X ∈ Γ(ker π∗)
⊥ and V ∈ Γ(ker π∗), using (5) and (9), we have

(34) (∇π∗)(X,V ) = −π∗(∇gXV ) = −π∗(AXV ).

Also, for U, V ∈ Γ(ker π∗), using (3) and (9), we have

(35) (∇π∗)(U, V ) = −π∗(∇gUV ) = −π∗(TUV ).

Hence the proof is complete from (33)–(35). �

Corollary 4.10. Let π : (M2m
m , g, J) → (B2n

n , g′, J ′) be an almost Norden
submersion from a Kaehler-Norden manifold M . Let π be a totally geodesic
map. Then from (i) of Theorem 4.1, we get

g(AXY, V ) = −g(AXV, Y ) = 0,

then the non-degeneracy of the vertical distribution implies AXY = 0 for any
X,Y ∈ Γ(ker π∗)

⊥. Thus, if the almost Norden submersion π from a Kaehler-
Norden manifold to an almost Norden manifold is totally geodesic, then the
fibers of π are totally geodesic and the horizontal distribution is integrable.
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Now, we recall an important theorem for product structures from [22].

Theorem 4.11. Let g be a Riemannian metric tensor on the manifold M =
M ×N and assume that the canonical foliations DM and DN intersect perpen-
dicularly everywhere. Then g is the metric tensor of

(i) a double-twisted product M ×(f,g) N if and only if DM and DN are
totally umbilical foliations,

(ii) a twisted product M×fN if and only if DM is a totally geodesic foliation
and DN is a totally umbilical foliation,

(iii) a warped product M ×f N if and only if DM is a totally geodesic foli-
ation and DN is a spherical foliation, i.e., it is umbilical and its mean
curvature vector field is parallel, and

(iv) a usual product of Riemannian manifolds if and only if DM and DN
are totally geodesic foliations.

Hence from Theorems 4.6, 4.7, 4.9 and 4.11, we have following result directly.

Theorem 4.12. Let π : (M2m
m , g, J) → (B2n

n , g′, J ′) be an almost Norden
submersion between almost Norden manifolds. Then M is a locally product
manifold if and only if π is a totally geodesic map.

Theorem 4.13. Let π : (M2m
m , g, J) → (B2n

n , g′, J ′) be an almost Norden
submersion between almost Norden manifolds such that M(ker π∗)⊥ is a totally

umbilical integral manifold of the distribution (ker π∗)
⊥. Then M(ker π∗)⊥ is

totally geodesic.

Proof. Let h be the second fundamental form of M(ker π∗)⊥ . Then h(X,Y ) =

g(X,Y )H̃ for any X,Y ∈ Γ(ker π∗)
⊥, where H̃ is the mean curvature of

M(ker π∗)⊥ . Let U ∈ Γ(ker π∗). Then

g(∇gXX,U) = g(h(X,X), U) = g(X,X)g(H̃, U).

On the other hand, using (6) and (8), we have

g(∇gXX,U) = g(AXX,U) = 0.

Hence g(X,X)g(H̃, U) = 0 then the non-degeneracy of g on (ker π∗) and

(ker π∗)
⊥ implies that H̃ = 0. Hence the assertion is complete. �

Corollary 4.14. There does not exist an almost Norden submersion π between
almost Norden manifolds (M2m

m , g, J) and (B2n
n , g′, J ′) such that M is a twisted

product of the form M(ker π∗) ×f M(ker π∗)⊥ , where M(ker π∗)⊥ and M(ker π∗)

are integral manifolds of the distributions (ker π∗)
⊥ and (ker π∗), respectively.

Corollary 4.15. There does not exist an almost Norden submersion π be-
tween almost Norden manifolds (M2m

m , g, J) and (B2n
n , g′, J ′) such that M is a

double-twisted product of the form M(ker π∗) ×(f,g) M(ker π∗)⊥ or of the form
M(ker π∗)⊥ ×(f,g) M(ker π∗), where M(ker π∗)⊥ and M(ker π∗) are integral man-

ifolds of the distributions (ker π∗)
⊥ and (ker π∗), respectively.



390 G. GUPTA, R. KUMAR, R. RANI, AND R. SACHDEVA

Corollary 4.16. There does not exist an almost Norden submersion π between
almost Norden manifolds (M2m

m , g, J) and (B2n
n , g′, J ′) such that M is a warped

product of the form M(ker π∗)×M(ker π∗)⊥ , where M(ker π∗)⊥ and M(ker π∗) are

integral manifolds of the distributions (ker π∗)
⊥ and (ker π∗), respectively.

Now, we recall that a Riemannian submersion π : (M1, g1)→ (M2, g2) between
Riemannian manifolds is called a Riemannian submersion with totally umbilical
fibers if

(36) TUV = g1(U, V )H

for U, V ∈ Γ(ker π∗), where H is the mean curvature vector of the fibers.

Theorem 4.17. Let π be an almost Norden submersion with totally umbili-
cal fibers from a Kaehler-Norden manifold (M2m

m , g, J) to an almost Norden
manifold (B2n

n , g′, J ′). Then fibers are totally geodesic.

Proof. For U ∈ Γ(ker π∗), using (3) and the Kaehlerian property of M , we get

JTJUU + J(V∇gJUU) = TJUJU + V∇gJUJU.

Further, using (36) and (11), we obtain

(37) g(JU,U)JH + J(V∇gJUU) = −g(U,U)H + V∇gJUJU.

On taking the scalar product of both sides of (37) with X ∈ Γ(ker π∗)
⊥ and

using Theorem 3.1, we get

(38) g(JU,U)g(JH,X) = −g(U,U)g(H,X).

Similarly, on taking the scalar product of both sides of (37) with

JX ∈ Γ(ker π∗)
⊥,

we get

(39) g(JU,U)g(H,X) = g(U,U)g(H,JX).

Since the vertical distribution is non-degenerate, then on solving (38) and (39),
it follows that

g(H,JX)2 + g(H,X)2 = 0,

then non-degeneracy of the horizontal distribution implies H = 0. Hence, the
proof is complete. �

Theorem 4.18. Let π : (M2m
m , g, J) → (B2n

n , g′, J ′) be an almost Norden
submersion between almost Norden manifolds. Then M is a locally twisted
product manifold of the form M(ker π∗)⊥ ×f M(ker π∗) if and only if

TVX = −g(X, TV V )‖V ‖−2V, and AXV = 0

for any X ∈ Γ(ker π∗)
⊥ and V ∈ Γ(ker π∗), where M(ker π∗)⊥ and M(ker π∗)

are integral manifolds of the distributions (ker π∗)
⊥ and (ker π∗), respectively.
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Proof. For X ∈ Γ((ker π∗)
⊥) and U, V ∈ Γ(ker π∗), using (4), we get

(40) g(∇gV U,X) = −g(U,∇gVX) = −g(U, TVX).

This implies that (ker π∗) is totally umbilical if and only if

(41) TVX = −X(µ)V,

where µ is some function on M . On taking scalar product with V to both sides
of (41) and then using (40), we obtain

−X(µ)‖V ‖2 = g(TVX,V ) = −g(X, TV V ),

this further implies that

(42) X(µ) = g(X, TV V )‖V ‖−2.

Hence from (41) and (42), (ker π∗) is totally umbilical if and only if

TVX = −g(X, TV V )‖V ‖−2V.

Thus the proof is complete using the last expression, Theorem 4.6 and (34). �

In [16], Gudmundsson and Wood obtained expression for the tension field
of a holomorphic map between an almost Hermitian manifold and a quasi-
Kaehler manifold. Then, Chinea [6] derived expression for the tension field of
a holomorphic map between almost Hermitian manifolds. In the next theorem,
we obtain expression for the tension field of an almost Norden submersion
between almost Norden manifolds by using adapted local basis.

Theorem 4.19. Let π : (M2m
m , g, J) → (B2n

n , g′, J ′) be an almost Norden
submersion between almost Norden manifolds. Then the tension field τ(π) of
π is given by

(43) τ(π) = −π∗(trac T ).

Proof. Assume that {U1, . . . , Um−n, V1 = JU1, . . . , Vm−n = JUm−n} and {X1,
. . . , Xn, Y1 = JX1, . . . , Yn = JXn} are adapted local bases of (ker π∗) and
(ker π∗)

⊥, respectively and satisfies (18), where Xj are basic vector fields on
M , which are π-related to vector fields X∗j of B, respectively. Then the tension
field τ(π) of π is given by

τ(π) =

m−n∑
i=1

((∇π∗)(Ui, Vi) + (∇π∗)(Vi, Ui))

+

n∑
j=1

((∇π∗)(Xj , Yj) + (∇π∗)(Yj , Xj)),(44)

further using (33) and (3), we obtain

τ(π) = −
m−n∑
i=1

(π∗(∇gUi
Vi) + π∗(∇gVi

Ui))
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= −
m−n∑
i=1

(π∗(TUi
Vi + TVi

Ui))

= −π∗
{m−n∑

i=1

(TUi
Vi + TVi

Ui)
}

= −π∗(trac T ).

Hence the proof is complete. �

Hence from the last theorem, we have following important assertion imme-
diately.

Theorem 4.20. Let π : (M2m
m , g, J) → (B2n

n , g′, J ′) be an almost Norden
submersion. Then π is a harmonic map if and only if π has minimal fibers.

Let (M2m
m , g, J) be a Kaehler-Norden manifold. Then using (iv) of Theorem

4.2 in (43), we derive

τ(π) = −2J ′
m−n∑
i=1

π∗(TUi
Ui).

Hence, we have following important assertion directly.

Theorem 4.21. Let π : (M2m
m , g, J) → (B2n

n , g′, J ′) be an almost Norden
submersion from a Kaehler-Norden manifold. Then π is a harmonic map if and
only if TUi

Ui = 0 for adapted local basis {U1, . . . , Um−n, V1 = JU1, . . . , Vm−n =
JUm−n} of (ker π∗).

Using Theorem 4.17, we deduce the following result.

Corollary 4.22. Let π be an almost Norden submersion with totally umbil-
ical fibers from a Kaehler-Norden manifold (M2m

m , g, J) to an almost Norden
manifold (B2n

n , g′, J ′). Then π is a harmonic map.

Let π : (M2m
m , g, J)→ (B2n

n , g′, J ′) be an almost Norden submersion from an
almost Norden manifold M . If π is horizontally weakly conformal, then we say
it as a horizontally weakly conformal almost Norden submersion, with dilation
λ. Now, we recall an important result from [2, p. 119], for further use.

Theorem 4.23. Suppose π : M → B is a horizontally conformal submersion
between Riemannian manifolds. Then

(45) (∇π∗)(X,Y ) = X(lnλ)π∗(Y ) + Y (lnλ)π∗(X)− g(X,Y )π∗(grad lnλ)

for any horizontal vector fields X and Y .

It is also known that if {Ei}ni=1 is an orthonormal frame on a semi-Riemannian
manifold (N,h) of dimension n, then any X ∈ Γ(TN) can be written as

(46) X =

n∑
i=1

εih(X,Ei)Ei,
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where εi is the signature of {Ei}.

Theorem 4.24. Let π : (M2m
m , g, J) → (B2n

n , g′, J ′) be a horizontally weakly
conformal almost Norden submersion, with dilation λ, from an almost Norden
manifold M . Then the tension field of π is given by

τ(π) = −π∗(trac T )− 2(n− 1)π∗(grad lnλ).(47)

Proof. Using the symmetric property of the second fundamental form of π in
(44), we have

τ(π) =

m−n∑
i=1

((∇π∗)(Ui, Vi) + (∇π∗)(Vi, Ui)) + 2

n∑
j=1

(∇π∗)(Xj , Yj).

Further, follow the proof of Theorem 4.19 and (45) in the last expression, we
derive

τ(π) = − π∗(trac T ) + 2π∗

{ n∑
j=1

(
Xj(lnλ)Yj + Yj(lnλ)Xj

− g(Xj , Yj)H(grad lnλ)
)}
,

using the relation X(lnλ) = g(grad lnλ,X) in the last expression, we have

τ(π) = − π∗(trac T ) + 2π∗

{ n∑
j=1

(
g(grad lnλ,Xj)Yj + g(grad lnλ, Yj)Xj

)}
− 2nπ∗(grad lnλ).(48)

For a horizontal vector field X, using adapted local basis {X1, . . . , Xn, Y1 =
JX1, . . . , Yn = JXn} of (ker π∗)

⊥ in (46), we can write

(49) X =

n∑
j=1

g(X,Xj)Yj + g(X,Yj)Xj .

Then on using (49) in (48), we obtain

τ(π) = −π∗(trac T )− 2(n− 1)π∗(grad lnλ).

Hence the result is complete. �

Thus using Theorem 4.20, we have following result.

Theorem 4.25. Let π : (M2m
m , g, J) → (B2n

n , g′, J ′) be a non-constant hori-
zontally weakly conformal almost Norden submersion, with dilation λ, from an
almost Norden manifold M . Then any two of the following assertions imply
the third:

(i) π is harmonic (and so a harmonic morphism).
(ii) π is horizontally homothetic.
(iii) π has minimal fibers.



394 G. GUPTA, R. KUMAR, R. RANI, AND R. SACHDEVA

References

[1] C. Altafini, Redundant robotic chains on Riemannian submersions, IEEE Transactions

on Robotics and Automation 20 (2004), 335–340.

[2] P. Baird and J. C. Wood, Harmonic morphisms between Riemannian manifolds, Lon-
don Mathematical Society Monographs. New Series, 29, The Clarendon Press, Oxford

University Press, Oxford, 2003. https://doi.org/10.1093/acprof:oso/9780198503620.

001.0001

[3] R. Bhattacharya and V. Patrangenaru, Nonparametic estimation of location and disper-

sion on Riemannian manifolds, J. Statist. Plann. Inference 108 (2002), no. 1-2, 23–35.

https://doi.org/10.1016/S0378-3758(02)00268-9

[4] J.-P. Bourguignon, A mathematician’s visit to Kaluza-Klein theory, Rend. Sem. Mat.

Univ. Politec. Torino 1989, Special Issue, 143–163 (1990).

[5] D. Chinea, Almost contact metric submersions, Rend. Circ. Mat. Palermo (2) 34 (1985),
no. 1, 89–104. https://doi.org/10.1007/BF02844887

[6] D. Chinea, Harmonicity of holomorphic maps between almost Hermitian manifolds,
Canad. Math. Bull. 52 (2009), no. 1, 18–27. https://doi.org/10.4153/CMB-2009-003-4

[7] J. Eells, Jr., and J. H. Sampson, Harmonic mappings of Riemannian manifolds, Amer.

J. Math. 86 (1964), 109–160. https://doi.org/10.2307/2373037
[8] F. Etayo, A. deFrancisco, and R. Santamaŕıa, Classification of almost Norden golden
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